Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Drought response transcriptomes are altered in poplar with reduced tonoplast sucrose transporter expression.

Identifieur interne : 001915 ( Main/Exploration ); précédent : 001914; suivant : 001916

Drought response transcriptomes are altered in poplar with reduced tonoplast sucrose transporter expression.

Auteurs : Liang-Jiao Xue [États-Unis] ; Christopher J. Frost [États-Unis] ; Chung-Jui Tsai [États-Unis] ; Scott A. Harding [États-Unis]

Source :

RBID : pubmed:27641356

Descripteurs français

English descriptors

Abstract

Transgenic Populus tremula x alba (717-1B4) plants with reduced expression of a tonoplast sucrose efflux transporter, PtaSUT4, exhibit reduced shoot growth compared to wild type (WT) under sustained mild drought. The present study was undertaken to determine whether SUT4-RNAi directly or indirectly altered poplar predisposition and/or response to changes in soil water availability. While sucrose and hexose levels were constitutively elevated in shoot organs, expression responses to drought were most altered in the root tips of SUT4-RNAi plants. Prior to any drought treatment, constitutively elevated transcript levels of abscisic acid biosynthetic genes and bark/vegetative storage proteins suggested altered metabolism in root tips of RNAi plants. Stronger drought-stimulation of stress-inducible genes encoding late-embryogenesis-abundant proteins in transgenic roots was consistent with increased vulnerability to soil drying. Transcript evidence suggested an RNAi effect on intercellular water trafficking by aquaporins in stem xylem during soil drying and recovery. Co-expression network analysis predicted altered integration of abscisic acid sensing/signaling with ethylene and jasmonate sensing/signaling in RNAi compared to WT roots. The overall conclusion is that steepened shoot-root sugar gradient in RNAi plants increased sensitivity of root tips to decreasing soil water availability.

DOI: 10.1038/srep33655
PubMed: 27641356
PubMed Central: PMC5027551


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Drought response transcriptomes are altered in poplar with reduced tonoplast sucrose transporter expression.</title>
<author>
<name sortKey="Xue, Liang Jiao" sort="Xue, Liang Jiao" uniqKey="Xue L" first="Liang-Jiao" last="Xue">Liang-Jiao Xue</name>
<affiliation wicri:level="2">
<nlm:affiliation>Warnell School of Forestry and Natural Resources and Department of Genetics, University of Georgia, Athens, GA 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Warnell School of Forestry and Natural Resources and Department of Genetics, University of Georgia, Athens, GA 30602</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Frost, Christopher J" sort="Frost, Christopher J" uniqKey="Frost C" first="Christopher J" last="Frost">Christopher J. Frost</name>
<affiliation wicri:level="2">
<nlm:affiliation>Warnell School of Forestry and Natural Resources and Department of Genetics, University of Georgia, Athens, GA 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Warnell School of Forestry and Natural Resources and Department of Genetics, University of Georgia, Athens, GA 30602</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
<affiliation wicri:level="2">
<nlm:affiliation>Warnell School of Forestry and Natural Resources and Department of Genetics, University of Georgia, Athens, GA 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Warnell School of Forestry and Natural Resources and Department of Genetics, University of Georgia, Athens, GA 30602</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Harding, Scott A" sort="Harding, Scott A" uniqKey="Harding S" first="Scott A" last="Harding">Scott A. Harding</name>
<affiliation wicri:level="2">
<nlm:affiliation>Warnell School of Forestry and Natural Resources and Department of Genetics, University of Georgia, Athens, GA 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Warnell School of Forestry and Natural Resources and Department of Genetics, University of Georgia, Athens, GA 30602</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27641356</idno>
<idno type="pmid">27641356</idno>
<idno type="doi">10.1038/srep33655</idno>
<idno type="pmc">PMC5027551</idno>
<idno type="wicri:Area/Main/Corpus">001624</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001624</idno>
<idno type="wicri:Area/Main/Curation">001624</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001624</idno>
<idno type="wicri:Area/Main/Exploration">001624</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Drought response transcriptomes are altered in poplar with reduced tonoplast sucrose transporter expression.</title>
<author>
<name sortKey="Xue, Liang Jiao" sort="Xue, Liang Jiao" uniqKey="Xue L" first="Liang-Jiao" last="Xue">Liang-Jiao Xue</name>
<affiliation wicri:level="2">
<nlm:affiliation>Warnell School of Forestry and Natural Resources and Department of Genetics, University of Georgia, Athens, GA 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Warnell School of Forestry and Natural Resources and Department of Genetics, University of Georgia, Athens, GA 30602</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Frost, Christopher J" sort="Frost, Christopher J" uniqKey="Frost C" first="Christopher J" last="Frost">Christopher J. Frost</name>
<affiliation wicri:level="2">
<nlm:affiliation>Warnell School of Forestry and Natural Resources and Department of Genetics, University of Georgia, Athens, GA 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Warnell School of Forestry and Natural Resources and Department of Genetics, University of Georgia, Athens, GA 30602</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
<affiliation wicri:level="2">
<nlm:affiliation>Warnell School of Forestry and Natural Resources and Department of Genetics, University of Georgia, Athens, GA 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Warnell School of Forestry and Natural Resources and Department of Genetics, University of Georgia, Athens, GA 30602</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Harding, Scott A" sort="Harding, Scott A" uniqKey="Harding S" first="Scott A" last="Harding">Scott A. Harding</name>
<affiliation wicri:level="2">
<nlm:affiliation>Warnell School of Forestry and Natural Resources and Department of Genetics, University of Georgia, Athens, GA 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Warnell School of Forestry and Natural Resources and Department of Genetics, University of Georgia, Athens, GA 30602</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Droughts (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Regulatory Networks (MeSH)</term>
<term>Membrane Transport Proteins (genetics)</term>
<term>Organ Specificity (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Roots (MeSH)</term>
<term>Plant Shoots (MeSH)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Populus (physiology)</term>
<term>RNA Interference (MeSH)</term>
<term>RNA, Small Interfering (genetics)</term>
<term>Sucrose (metabolism)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Interférence par ARN (MeSH)</term>
<term>Petit ARN interférent (génétique)</term>
<term>Populus (physiologie)</term>
<term>Pousses de plante (MeSH)</term>
<term>Protéines de transport membranaire (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Racines de plante (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Réseaux de régulation génique (MeSH)</term>
<term>Saccharose (métabolisme)</term>
<term>Spécificité d'organe (MeSH)</term>
<term>Sécheresses (MeSH)</term>
<term>Transcriptome (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Membrane Transport Proteins</term>
<term>Plant Proteins</term>
<term>RNA, Small Interfering</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Sucrose</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Petit ARN interférent</term>
<term>Protéines de transport membranaire</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Saccharose</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Droughts</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Gene Regulatory Networks</term>
<term>Organ Specificity</term>
<term>Plant Roots</term>
<term>Plant Shoots</term>
<term>Plants, Genetically Modified</term>
<term>RNA Interference</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Interférence par ARN</term>
<term>Pousses de plante</term>
<term>Racines de plante</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Réseaux de régulation génique</term>
<term>Spécificité d'organe</term>
<term>Sécheresses</term>
<term>Transcriptome</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Transgenic Populus tremula x alba (717-1B4) plants with reduced expression of a tonoplast sucrose efflux transporter, PtaSUT4, exhibit reduced shoot growth compared to wild type (WT) under sustained mild drought. The present study was undertaken to determine whether SUT4-RNAi directly or indirectly altered poplar predisposition and/or response to changes in soil water availability. While sucrose and hexose levels were constitutively elevated in shoot organs, expression responses to drought were most altered in the root tips of SUT4-RNAi plants. Prior to any drought treatment, constitutively elevated transcript levels of abscisic acid biosynthetic genes and bark/vegetative storage proteins suggested altered metabolism in root tips of RNAi plants. Stronger drought-stimulation of stress-inducible genes encoding late-embryogenesis-abundant proteins in transgenic roots was consistent with increased vulnerability to soil drying. Transcript evidence suggested an RNAi effect on intercellular water trafficking by aquaporins in stem xylem during soil drying and recovery. Co-expression network analysis predicted altered integration of abscisic acid sensing/signaling with ethylene and jasmonate sensing/signaling in RNAi compared to WT roots. The overall conclusion is that steepened shoot-root sugar gradient in RNAi plants increased sensitivity of root tips to decreasing soil water availability.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27641356</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>06</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<PubDate>
<Year>2016</Year>
<Month>09</Month>
<Day>19</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Drought response transcriptomes are altered in poplar with reduced tonoplast sucrose transporter expression.</ArticleTitle>
<Pagination>
<MedlinePgn>33655</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/srep33655</ELocationID>
<Abstract>
<AbstractText>Transgenic Populus tremula x alba (717-1B4) plants with reduced expression of a tonoplast sucrose efflux transporter, PtaSUT4, exhibit reduced shoot growth compared to wild type (WT) under sustained mild drought. The present study was undertaken to determine whether SUT4-RNAi directly or indirectly altered poplar predisposition and/or response to changes in soil water availability. While sucrose and hexose levels were constitutively elevated in shoot organs, expression responses to drought were most altered in the root tips of SUT4-RNAi plants. Prior to any drought treatment, constitutively elevated transcript levels of abscisic acid biosynthetic genes and bark/vegetative storage proteins suggested altered metabolism in root tips of RNAi plants. Stronger drought-stimulation of stress-inducible genes encoding late-embryogenesis-abundant proteins in transgenic roots was consistent with increased vulnerability to soil drying. Transcript evidence suggested an RNAi effect on intercellular water trafficking by aquaporins in stem xylem during soil drying and recovery. Co-expression network analysis predicted altered integration of abscisic acid sensing/signaling with ethylene and jasmonate sensing/signaling in RNAi compared to WT roots. The overall conclusion is that steepened shoot-root sugar gradient in RNAi plants increased sensitivity of root tips to decreasing soil water availability.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Xue</LastName>
<ForeName>Liang-Jiao</ForeName>
<Initials>LJ</Initials>
<AffiliationInfo>
<Affiliation>Warnell School of Forestry and Natural Resources and Department of Genetics, University of Georgia, Athens, GA 30602, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Frost</LastName>
<ForeName>Christopher J</ForeName>
<Initials>CJ</Initials>
<AffiliationInfo>
<Affiliation>Warnell School of Forestry and Natural Resources and Department of Genetics, University of Georgia, Athens, GA 30602, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tsai</LastName>
<ForeName>Chung-Jui</ForeName>
<Initials>CJ</Initials>
<AffiliationInfo>
<Affiliation>Warnell School of Forestry and Natural Resources and Department of Genetics, University of Georgia, Athens, GA 30602, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Harding</LastName>
<ForeName>Scott A</ForeName>
<Initials>SA</Initials>
<AffiliationInfo>
<Affiliation>Warnell School of Forestry and Natural Resources and Department of Genetics, University of Georgia, Athens, GA 30602, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>09</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026901">Membrane Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D034741">RNA, Small Interfering</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C078729">sucrose transport protein, plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>57-50-1</RegistryNumber>
<NameOfSubstance UI="D013395">Sucrose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="Y">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053263" MajorTopicYN="N">Gene Regulatory Networks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026901" MajorTopicYN="N">Membrane Transport Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009928" MajorTopicYN="N">Organ Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034622" MajorTopicYN="N">RNA Interference</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034741" MajorTopicYN="N">RNA, Small Interfering</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013395" MajorTopicYN="N">Sucrose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="Y">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>04</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>08</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>9</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>9</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>6</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27641356</ArticleId>
<ArticleId IdType="pii">srep33655</ArticleId>
<ArticleId IdType="doi">10.1038/srep33655</ArticleId>
<ArticleId IdType="pmc">PMC5027551</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2008 Oct;95(8):3525-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18599628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Feb;146(2):515-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18083796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Sep;157(1):109-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21771914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Mar;34(3):514-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21118423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Mar;161(3):1486-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23302128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Jun 20;276(5320):1872-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9188535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2010 Dec;140(4):321-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20681973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Apr;11(4):707-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10213788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Sep;166(1):306-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25056922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(8):e44467</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22952983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Jul;25(7):2714-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23903318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D1114-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21097470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Dec;163(4):1729-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24170204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2012 Jul;110(2):415-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22437664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Jul;162(3):1566-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23719892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2013 Jan;31(1):46-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23222703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2012 Mar;14(2):325-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21972845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2011 May;4(3):377-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21502663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2002 Sep;90(3):301-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12234142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1996 Jan 1;24(1):238-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8594589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jan 1;30(1):325-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2011 Jan 13;11:13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21232107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Mar;65(5):757-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21261761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Jan;55(395):237-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14673028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Aug;34(8):1318-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21477124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5891-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21436041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10876-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12149483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2008 Oct 15;582(23-24):3281-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18804467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Aug 9;448(7154):666-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17637675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2003 Feb;34(2):374-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12613259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Oct;184(2):289-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19674338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008 Dec 29;9:559</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19114008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(1):71-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18931350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2005 Sep;96(3):457-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15987697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Apr;164(4):1789-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24572173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Mar;152(3):1418-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20034965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2013 Mar;147(3):296-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22671923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Jul 1;22(13):1600-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16606683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1994 Jan 1;13(1):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8306952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2005 Nov;59(5):723-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16270226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2015 Jan;153(1):119-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24814155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Jan;63(1):43-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21914658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Aug;27(4):325-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11532178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 Oct;68(3):289-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18618272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 May;64(8):2283-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23599275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4784-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9539816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Mar 15;31(6):1753-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12626717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(Database issue):D105-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19906716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Jan 1;27(1):297-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Mar 14;495(7440):193-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23467092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2013 Aug 19;13:118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23957885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Sep 1;12(5):698-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20701692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Nov 12;5:615</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25429293</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Géorgie (États-Unis)</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Géorgie (États-Unis)">
<name sortKey="Xue, Liang Jiao" sort="Xue, Liang Jiao" uniqKey="Xue L" first="Liang-Jiao" last="Xue">Liang-Jiao Xue</name>
</region>
<name sortKey="Frost, Christopher J" sort="Frost, Christopher J" uniqKey="Frost C" first="Christopher J" last="Frost">Christopher J. Frost</name>
<name sortKey="Harding, Scott A" sort="Harding, Scott A" uniqKey="Harding S" first="Scott A" last="Harding">Scott A. Harding</name>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001915 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001915 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27641356
   |texte=   Drought response transcriptomes are altered in poplar with reduced tonoplast sucrose transporter expression.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27641356" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020